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Abstract. Being responsible for more than half of the total traffic vo&iin the
Internet, HTTP is a popular subject for traffic analysis. rirour experiences
with HTTP traffic analysis we identified a number of pitfallfieh can render a
carefully executed study flawed. Often these pitfalls caavméded easily. Based
on passive traffic measurements of 20.000 European reiitlbrinadband cus-
tomers, we quantify the potential error of three issues:-Bamsideration of per-
sistent or pipelined HTTP requests, mismatches betweetxititent-Type header
field and the actual content, and mismatches betwee@dheent-Length header
and the actual transmitted volume. We find that 60 % (30 %) loHAITP re-
quests (bytes) are persistent (i. ., not the first in a TCPRextion) and 4 % are
pipelined. Moreover, we observeCantent-Type mismatch for 35 % of the total
HTTP volume. In terms o€ontent-Length accuracy our data shows a factor of at
least 3.2 more bytes reported in the HTTP header than agtuvatisferred.

1 Introduction

HTTP has become the preferred protocol for many Interneices. Internet users ex-
change most of their content via HTTP. They download videomfYouTube, share
photos and status updates via Facebook and Twitter, senckademails with Gmail
or Yahoo, or get the latest news and shop online. Thus amgy#T TP traffic has been
the focus of many recent studies [1-6, 9, 10]. Often thesdiefiare based on passive
packet-level traffic measurements. These measuremeetsiaiply huge amounts of
data to be analyzed, sometimes requiring simplificatiorse#de the analysis. Some of
these simplifications will lead to potential biases in theutts or even render a study
flawed, as we show in this paper.

In prior analysis of large HTTP traces [1, 6,9, 10], we endeted such inconsis-
tencies and identified and solved the problem. In this pagequantify the potential
errors of those issues. We study the prevalence of pipeénéedersistent HTTP con-
nections, and the accuracy of thentent-Length andContent-Type HTTP header fields.
Our results are drawn from anonymized HTTP traffic from rdy@®, 000 European



Table 1. Overview of anonymized HTTP data sets.

Name Start date Duration HTTP volume

MAR10 04 Mar 2010 24 h ~3.3TB
JUN10  23Jun 2010 24h ~3.2TB
HTTP14d 09 Sep 2009 14d ~42TB
HTTP12d 07 May 2010 12d ~38TB

Name Start date Duration HTTP volume

SEP08 18 Sep 2008 24 h ~25TB
APRO9 01 Apr2009 24h ~25TB
AUGO09 21 Aug 2009 48 h ~59TB

number of HTTP requests is highly underestimated. Indesgeh eonnection con-
tains more than 2 requests on average. We find (Section 3p@tof all HTTP
requests are persistent, i.e., they are not the first in a D8Raction. These persis-
tent requests are responsible for 30 % of the HTTP volumewalihtbe missed if
not taken into account in the analysis. Contrary to our etgiens, we find that the
most influential aspect on the use of persistent or pipeliagdests is the contacted
web service, not the user’s browser.

— HTTP content type: HTTP servers can specify the mime-type of the transferred
object in theContent-Type header. However, there is no guarantee that this infor-
mation is correct. Indeed, we find (Section 4) that for 35 %hef HTTP volume,
the Content-Type header is different from what is found by libmagic.

— HTTP content size:TheContent-Length field in HTTP headers can state incorrect
values for canceled transfers or erroneous Web serversirldaiaset we record
at least 3.2times more bytes reportedCiontent-Length headers than is actually
transferred (Section 5).

2 Data & Methodology

In this section we present our data sets before describingiethodology. We conclude
this section by introducing the user population with respe&rowser and OS usage.

Anonymized HTTP data Our study is based on multiple sets of anonymized packet-
level observations of residential DSL connections codldett a large European ISP over
the course of more than 2 years. Data anonymization andsisayperformed imme-
diately on the secured measurement infrastructure. We us¢8Bwith a customized
HTTP analysis script. The monitor operates at the broadbaoess router connecting
customers to the ISP’s backbone and observes the traffic of than 20000 DSL
lines. The monitor uses Endace monitoring cards. While vpécfly do not experi-
ence any packet loss, there are several multi-second gesiibldl no packets (less than
5 minutes overall per trace) due to OS/file-system intevastiWWe summarize the char-
acteristics, including start time, duration and size, & ttaces in Table 1HTTP14d
andHTTP12d do not include request headers. Please refer to Maier ef]dlof de-
tailed characteristics of this user population (e.g. DSts&® lenght, application usage
or network performance).

Persistence and PipeliningWe investigate the prevalence of persistence and pipglinin
in HTTP connections. We define the first request/responsecohaection asnitial,



and mark all follow-up requests/repliesssistent. Hence persistent connections are
connections with more than one reque$his allows us to derive the following metrics:
(i) The fraction of connections that are persistéii},the fraction of requests that are
persistent, angiii) the fraction of bytes transported in persistent requesifrese pairs.

Next, if a request is issued before the response of an egtieest in the same con-
nection is finished, we mark this requestpiiselined. Moreover, if pipelined requests
are sent in theame IP packet®, we mark them as such. Similarly to the persistent re-
quests, we derive the same fractions as metrics for theipga¥same packet marking
method. BecauseTTP14d andHTTP12d do not include request timestamps, we cannot
use those to determine pipelined/same packet requests.

Note that we never mark the first request of a connection asgpent nor do we
mark the first request of a pipeline (or same-packet) as stivh.reasoning behind
this is that we want to focus on the differences to a one reqersconnection model
(HTTP/1.0). Also note that each request marked as pipelvidcilways be marked
as persistent as well, and thereby the set of pipelined stgjigea subset of persistent
requests. Similarly, the set of same-packet requests isseesof pipelined requests.

We also investigate whether different operating systenmsrawsers influence our
results. Therefore, we annotate our data sets accordinglyarform our analysis for
each subset. We extract browser type and operating sysfemmiation from HTTP
user-agent strings using an open source parser

Content Type Another potential error can be made by relying on Guatent-Type
header to identify the mime type of transferred files. To ss$eis error, we extract the
Content-Type header and analyze the initial portion of the HTTP body wittimiagic.
We then compare the type reported by HTTP headers and litraagi analyze cases
in which they disagree.

Content Length and Download Volume HTTP servers can set @ontent-Length
header in the response indicating the size of the body. Fsigbent HTTP connec-
tions, the existence of eitherGontent-Length or aContent-Encoding header is manda-
tory. When measuring the volume downloaded via HTTP, onectaose tqi) mea-
sure the bytes transported on the wire,(ioy use theContent-Length header of the
HTTP response. The second option may introduce errorsedamg user interaction
(e.qg., interrupted downloads), software errors, or th& FcContent-Length headers.
While canceling a download leads to larger values repohtad aictually downloaded,
the lack ofContent-Length headers will typically cause to ignore the request and there
fore underestimate the volume. We define the estimatiorr egdhe ratio of the size
announced by th€ontent-Length header and the actually downloaded volume. If an
HTTP response does not includ€antent-Length header, we define the ratio as 1.

5 Bro terminates connections at control packets (SYN, FIN/RS an inactivity timeout.

6 packet capture is often configured with a snap-length sdfikdirst lines of the HTTP header
are captured. Often, such traces would include persiséepiaists but not second (pipelined)
ones in the same packet.

7 http://luser-agent-string.info/download/UASparser
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request per packet and just greps for the last string thatheata certain header field
in the packet, 4 % of the requests would be affected.

3.3 Impact of browser

Common wisdorh suggests that pipelining is disabled by default in the mogtup
lar browsers. Our traces on the other hand show a non-nelgligmount of pipelined
requests. We therefore drill down into the data and analiyaeross browser fami-
lies, operating systems, and content-types. In additioselect a number of—in our
dataset—popular and high-volume web services for comgaris

We expect that browsers have a significant impact on the nuwibpersistent
and pipelined requests. While the server needs to suppdrPHI1 for persistent and
pipelined request, the browser ultimately has to issue ¢aeest. Callahan et al. [2]
observed a drastic change in the number of requests per @imand attributes the
change to a different default browser version in the envirent they monitor.

In Figure 6, we show per browser results for the persistedt@pelined request
marking methods fafUN10, as in Figure 4. We observe that the variance among the dif-
ferent browser categories is limited. Microsoft's Intar&&plorer (MSIE), has around
10% more persistent bytes than Firefox. Together, theywddor 70 % of the vol-
ume and 80 % of the requests. Opera does stand out with anallyusigh fraction of
pipelined requests, which is expected as it is the only beotrgt has HTTP pipelining
enabled by default. Yet, it comprises only about 2.5 % of tlielrequests and volume.
We do find similar results for the per OS analysis. Linux ancc®& X have lower
fractions of persistent bytes than Windows, although thetion of requests is similar.

3.4 Impact of Web Service

We now select the 30 most requested and/or highest volunnedéevel domains from
our dataset and calculate our metrics as for the browsegaads. We then group to-
gether domains fronfi) the same web service (e. §acebook. comandf bcdn. com)
and (ii) similar types of pages when the results are similar: “OSNisists of three
locally popular online social networks (Jappy, Mein/Siidi and Schueller.cc) with
similar results and “Adult” consists of three video portaffering adult content. The
fraction of persistent and pipelined requests and bytelseofésulting 18 web services
are shown in Figure 7 faruN10.

The plot shows more variations across web services comparacross browsers
versions in Figure 6. Web services have a stronger influengesistence and pipelin-
ing. The fraction of persistent requests ranges from 11 %ddaed.to) up to 88 %
(WindowsUpdate), and the fraction of bytes in persistequests even ranges from
<1% (MegaVideo and MegaUpload) to 95% (again WindowsUpdaiejerms of
pipelined requests we see maxima at 33 % for Microsoft and fdrd%®apidShare for
requests and volume, respectively. These fractions ardfisantly higher than those
we observe for Opera, which achieved the highest fractiofasdVe do not observe
a strong relation between the type of web service and pensistpipelining. Consider

8 Wikipedia (version 11 August 20110t t p: / / en. wi ki pedi a. or g/ wi ki / Pi pel i ned_HTTP.
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Fig. 7. Percentage of persistent/pipelined request/bytes fect web services faluN10.

for example the One-Click Hosters MegaUpload, RapidSlzare Uploaded.to. While
MegaUpload has more than 70 % of persistent requests, teetath have barely more
the 10%. Moreover, all request that are persistent are atsiped for RapidShare,
yet the other two have almost no pipelined requests at adl.tiio CDNs (Akamai and
LimeLight) also exhibit largely different fractions for pstent requests and volume.

The effects of different web services also translates iifterénces when examining
the results byContent-Type. Similarly to YouTube, MegaVideo, and MyVideo, flash-
video i deo/ f 1 v) has less than 1% pipelined requests and bytes. On the athdr h
appl i cation/rar has the largest amounts of both pipelined requests and, ipgies)
mostly delivered by RapidShare.

The limited impact of browsers on persistence and pipgjirdian be explained
by two trends in web content delivery. First, distributechimmt delivery infrastruc-
tures can prevent persistent requests. Second, more arel wedr services rely on
service-supplied code to be executed in the browsers, suliAX-based clients [9],
which issue the HTTP requests instead of the browser. Fongbea in all traces except
JUN10 the fraction of persistent bytes for YouTube never exceetiddand but is at
47 % for JUN10. A likely explanation for this change is prolonged servestmectur-
ing after Google’s acquisition of YouTube in 2006: Over Ak traces we observe the
googl evi deo. comdomain emerge and vanish again. Evidence for the secondreal
tion can be seen from the high fraction (15 %) of pipelinediesq in Facebook, which
heavily uses AJAX, as it is unlikely that all these requestsissued only from Opera
browsers.

4 Content Type

We next turn our focus to HTTPBontent-Type header. In Figure 8 we plot the fraction
of HTTP bytes for which th€ontent-Type header and an analysis by libmagic disagree.
We normalize the mime type strings by removing leadindout otherwise perform a
string comparison between the header and libmagic’s edt find that up to 36 % of
HTTP volume exhibits mismatches. The most common case ith 87 % is when the
Content-Type header uses a generic type (e.g., application/octetrstozdext/plairf)

9 We only count text/plain as generic if t@ntent-Type header specifies text/plain and libmagic
yields a non-text type.
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but libmagic yields a known type. We label this class of mitmhasGen::NonGen. The
opposite caseNonGen::Gen, in which theContent-Type specifies a type but libmagic
fails to detect one is the second most common one. We obdeé.6—6.6 % of HTTP
bytes fall into this class. While some of the types are nopsuied by libmagic, e. g.,
Google safe browsing chunks, others include audio or videméts that should be
supported by libmagic. It is hard to exactly assess wheitedgic or theContent-Type
header are “correct” in such cases. In Tiegt, Media, andimage classes th€ontent-
Type header agreed on the general category of the type (e.g.einbag disagreed on
the actual file format (JPEG vs. PNG). While libmagic shoutdaecurate for image
data, other media (audio, video) is harder to assess, ghadrthere is a plethora of
different container-types and codecs often with similanas.

When we investigate the largest clasgn::NonGen, in more detail, we find that
(in terms of bytes) RAR-archives are responsible for ardah® of these mismatches,
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Fig. 10. Over-estimation factor of theontent-Length header (60 min bins, logarithmic y-axis).

time. We choose thETTP14d andHTTP12d traces for this analysis to show the time-
dependent behavior.

We find that theContent-Length headers over-estimate the actually downloaded vol-
ume by a factor of 5 for HTTP14d and a factor of 127 foHTTP12d. A closer ex-
amination ofHTTP12d shows that a single user downloading two large files from a
single host with a badly (mis-)configured download managéne culprit. This down-
load manager opened over 4000 connections for each of these files to parallelize the
download and requested large, overlapping byte rangeset#wthe download man-
ager aborts each download after receiving enough data &r tioe whole file. Overall,
the requested download volume fraantent-Length headers sums up to over 4 PB, an
over-estimation by a factor of more than,600. After removing these two files from
the data set the over-estimation factor #aiTP12d drops to 382. We observe a similar
case inHTTP14d, though to a far lesser extent and involving only a single figer
removing the corresponding file, the over-estimation fantduces from 35 to 328
for HTTP14d.

This highlights how much the over-estimation factor degeon events of limited
duration. This leads us to further investigate this vatgtibver time. Figure 10 plots
the over-estimation factor for 60 minute bins. We align aacés by day of week. In
general, the over-estimation factor is betweed 2.4 for HTTP12d) and 5 for each
60 minute bin. However, we observe spikes exceeding thessibas by several orders
of magnitude. Furthermore, we see the mis-configured dadteanager iMTTP12d
that causes the over-estimation factor to rise to 500 to 280&everal hours.

We note that based on these 60 minute time bins, the staneésiatidn for both
traces exceeds the average by far. Moreover, there is noeaypaeekly or daily pat-
tern. Accurate HTTP object size measurement thereforeinexjto parse the whole
HTTP stream.

6 Conclusion

In this paper we identify and investigate three potentidiafis in HTTP traffic analysis.
We study the accuracy of information @ontent-Length andContent-Type headers, as
well as the amount of persistent and pipelined traffic.



Our results indicate a significant over-estimation, attl8astimes, when relying on
the HTTPContent-Length header for volume inference. For accurate volume account-
ing, complete processing of the data after the HTTP respbrader is required to
detect transfer abortions, erroneous HTTP servers, antbrfigured download man-
agers. The mismatch betwe€ontent-Type header and libmagic content types amounts
to 35% of the HTTP volume. Relying on tl@mntent-Type header for content classifi-
cation can lead to a significant amount of unclassified cahes to a generiContent-
Type, and to a lesser degree in misclassification of the contémdlli only analyzing
the first packet of a connection discards 60 % of the total Hieffaests and 30 % of the
HTTP volume. Simplifying the analysis by capturing just egb bytes per packet to
include HTTP headers leads to another risk: We find 4 % of theests to be pipelined
and transmitted together with the previous request in desipacket.

As future work, we plan to further analyze the use of pipelinand persistence by
different web services and applications, especially withpect to application design
and content delivery.
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