
Pitfalls in HTTP Traffic Measurements and Analysis

Fabian Schneider1,2, Bernhard Ager2, Gregor Maier2,3,
Anja Feldmann2, and Steve Uhlig4

1 NEC Laboratories Europe, Heidelberg, Germany
(work done at UPMC Sorbonne Universités, LIP6, Paris, France)
2 TU Berlin / Telekom Innovation Laboratories, Berlin, Germany
3 International Computer Science Institute, Berkeley, CA, USA

4 Queen Mary, University of London, London, UK

Abstract. Being responsible for more than half of the total traffic volume in the
Internet, HTTP is a popular subject for traffic analysis. From our experiences
with HTTP traffic analysis we identified a number of pitfalls which can render a
carefully executed study flawed. Often these pitfalls can beavoided easily. Based
on passive traffic measurements of 20.000 European residential broadband cus-
tomers, we quantify the potential error of three issues: Non-consideration of per-
sistent or pipelined HTTP requests, mismatches between theContent-Type header
field and the actual content, and mismatches between theContent-Length header
and the actual transmitted volume. We find that 60 % (30 %) of all HTTP re-
quests (bytes) are persistent (i. e., not the first in a TCP connection) and 4 % are
pipelined. Moreover, we observe aContent-Type mismatch for 35 % of the total
HTTP volume. In terms ofContent-Length accuracy our data shows a factor of at
least 3.2 more bytes reported in the HTTP header than actually transferred.

1 Introduction

HTTP has become the preferred protocol for many Internet services. Internet users ex-
change most of their content via HTTP. They download videos from YouTube, share
photos and status updates via Facebook and Twitter, send andread emails with Gmail
or Yahoo, or get the latest news and shop online. Thus analyzing HTTP traffic has been
the focus of many recent studies [1–6, 9, 10]. Often these studies are based on passive
packet-level traffic measurements. These measurements often imply huge amounts of
data to be analyzed, sometimes requiring simplifications toscale the analysis. Some of
these simplifications will lead to potential biases in the results or even render a study
flawed, as we show in this paper.

In prior analysis of large HTTP traces [1, 6, 9, 10], we encountered such inconsis-
tencies and identified and solved the problem. In this paper we quantify the potential
errors of those issues. We study the prevalence of pipelinedand persistent HTTP con-
nections, and the accuracy of theContent-Length andContent-Type HTTP header fields.
Our results are drawn from anonymized HTTP traffic from roughly 20,000 European

Table 1.Overview of anonymized HTTP data sets.

Name Start date Duration HTTP volume

SEP08 18 Sep 2008 24 h ≈ 2.5 TB
APR09 01 Apr 2009 24 h ≈ 2.5 TB
AUG09 21 Aug 2009 48 h ≈ 5.9 TB

Name Start date Duration HTTP volume

MAR10 04 Mar 2010 24 h ≈ 3.3 TB
JUN10 23 Jun 2010 24 h ≈ 3.2 TB
HTTP14d 09 Sep 2009 14 d ≈ 42 TB
HTTP12d 07 May 2010 12 d ≈ 38 TB

number of HTTP requests is highly underestimated. Indeed, each connection con-
tains more than 2 requests on average. We find (Section 3) that60 % of all HTTP
requests are persistent, i.e., they are not the first in a TCP connection. These persis-
tent requests are responsible for 30 % of the HTTP volume, andwill be missed if
not taken into account in the analysis. Contrary to our expectations, we find that the
most influential aspect on the use of persistent or pipelinedrequests is the contacted
web service, not the user’s browser.

– HTTP content type: HTTP servers can specify the mime-type of the transferred
object in theContent-Type header. However, there is no guarantee that this infor-
mation is correct. Indeed, we find (Section 4) that for 35 % of the HTTP volume,
theContent-Type header is different from what is found by libmagic.

– HTTP content size:TheContent-Length field in HTTP headers can state incorrect
values for canceled transfers or erroneous Web servers. In our dataset we record
at least 3.2 times more bytes reported inContent-Length headers than is actually
transferred (Section 5).

2 Data & Methodology

In this section we present our data sets before describing our methodology. We conclude
this section by introducing the user population with respect to Browser and OS usage.

Anonymized HTTP data Our study is based on multiple sets of anonymized packet-
level observations of residential DSL connections collected at a large European ISP over
the course of more than 2 years. Data anonymization and analysis is performed imme-
diately on the secured measurement infrastructure. We use Bro [8] with a customized
HTTP analysis script. The monitor operates at the broadbandaccess router connecting
customers to the ISP’s backbone and observes the traffic of more than 20,000 DSL
lines. The monitor uses Endace monitoring cards. While we typically do not experi-
ence any packet loss, there are several multi-second periods with no packets (less than
5 minutes overall per trace) due to OS/file-system interactions. We summarize the char-
acteristics, including start time, duration and size, of the traces in Table 1.HTTP14d
andHTTP12d do not include request headers. Please refer to Maier et al. [6] for de-
tailed characteristics of this user population (e.g. DSL session lenght, application usage
or network performance).

Persistence and PipeliningWe investigate the prevalence of persistence and pipelining
in HTTP connections. We define the first request/response of aconnection asinitial,

and mark all follow-up requests/replies aspersistent. Hence,persistent connections are
connections with more than one request.5 This allows us to derive the following metrics:
(i) The fraction of connections that are persistent,(ii) the fraction of requests that are
persistent, and(iii) the fraction of bytes transported in persistent request/response pairs.

Next, if a request is issued before the response of an earlierrequest in the same con-
nection is finished, we mark this request aspipelined. Moreover, if pipelined requests
are sent in thesame IP packet6, we mark them as such. Similarly to the persistent re-
quests, we derive the same fractions as metrics for the pipelined/same packet marking
method. BecauseHTTP14d andHTTP12d do not include request timestamps, we cannot
use those to determine pipelined/same packet requests.

Note that we never mark the first request of a connection as persistent nor do we
mark the first request of a pipeline (or same-packet) as such.The reasoning behind
this is that we want to focus on the differences to a one request per connection model
(HTTP/1.0). Also note that each request marked as pipelinedwill always be marked
as persistent as well, and thereby the set of pipelined requests is a subset of persistent
requests. Similarly, the set of same-packet requests is a subset of pipelined requests.

We also investigate whether different operating systems orbrowsers influence our
results. Therefore, we annotate our data sets accordingly and perform our analysis for
each subset. We extract browser type and operating system information from HTTP
user-agent strings using an open source parser7.

Content Type Another potential error can be made by relying on theContent-Type
header to identify the mime type of transferred files. To assess this error, we extract the
Content-Type header and analyze the initial portion of the HTTP body with libmagic.
We then compare the type reported by HTTP headers and libmagic and analyze cases
in which they disagree.

Content Length and Download Volume HTTP servers can set aContent-Length
header in the response indicating the size of the body. For persistent HTTP connec-
tions, the existence of either aContent-Length or aContent-Encoding header is manda-
tory. When measuring the volume downloaded via HTTP, one canchoose to(i) mea-
sure the bytes transported on the wire, or(ii) use theContent-Length header of the
HTTP response. The second option may introduce errors, caused by user interaction
(e. g., interrupted downloads), software errors, or the lack of Content-Length headers.
While canceling a download leads to larger values reported than actually downloaded,
the lack ofContent-Length headers will typically cause to ignore the request and there-
fore underestimate the volume. We define the estimation error as the ratio of the size
announced by theContent-Length header and the actually downloaded volume. If an
HTTP response does not include aContent-Length header, we define the ratio as 1.

5 Bro terminates connections at control packets (SYN, FIN/RST) or an inactivity timeout.
6 Packet capture is often configured with a snap-length so thatthe first lines of the HTTP header

are captured. Often, such traces would include persistent requests but not second (pipelined)
ones in the same packet.

7 http://user-agent-string.info/download/UASparser

SEP08 APR09 AUG09 MAR10 JUN10

V
ol

um
e

pe
r

O
S

 [%
]

0

20

40

60

80

100

C
C

D
F

: y
 =

 P
(#

ob
je

ct
s)

 >
=

 x

10 100 1000 10000 100000

x = Objects per connection

30%

HTTP12dHTTP14dJUN10

1

1

10

-1

10 -2 10-3 10 -410 -5

10-6 10 -7 10-8 Fig. 3.

request per packet and just greps for the last string that matches a certain header field
in the packet, 4 % of the requests would be affected.

3.3 Impact of browser

Common wisdom8 suggests that pipelining is disabled by default in the most popu-
lar browsers. Our traces on the other hand show a non-negligible amount of pipelined
requests. We therefore drill down into the data and analyze it across browser fami-
lies, operating systems, and content-types. In addition weselect a number of—in our
dataset—popular and high-volume web services for comparison.

We expect that browsers have a significant impact on the number of persistent
and pipelined requests. While the server needs to support HTTP/1.1 for persistent and
pipelined request, the browser ultimately has to issue the request. Callahan et al. [2]
observed a drastic change in the number of requests per connection and attributes the
change to a different default browser version in the environment they monitor.

In Figure 6, we show per browser results for the persistent and pipelined request
marking methods forJUN10, as in Figure 4. We observe that the variance among the dif-
ferent browser categories is limited. Microsoft’s Internet Explorer (MSIE), has around
10 % more persistent bytes than Firefox. Together, they account for 70 % of the vol-
ume and 80 % of the requests. Opera does stand out with an unusually high fraction of
pipelined requests, which is expected as it is the only browser that has HTTP pipelining
enabled by default. Yet, it comprises only about 2.5 % of the total requests and volume.
We do find similar results for the per OS analysis. Linux and MacOS X have lower
fractions of persistent bytes than Windows, although the fraction of requests is similar.

3.4 Impact of Web Service

We now select the 30 most requested and/or highest volume second level domains from
our dataset and calculate our metrics as for the browser categories. We then group to-
gether domains from(i) the same web service (e. g.,facebook.com andfbcdn.com)
and (ii) similar types of pages when the results are similar: “OSN” consists of three
locally popular online social networks (Jappy, Mein/StudiVZ, and Schueller.cc) with
similar results and “Adult” consists of three video portalsoffering adult content. The
fraction of persistent and pipelined requests and bytes of the resulting 18 web services
are shown in Figure 7 forJUN10.

The plot shows more variations across web services comparedto across browsers
versions in Figure 6. Web services have a stronger influence on persistence and pipelin-
ing. The fraction of persistent requests ranges from 11 % (Uploaded.to) up to 88 %
(WindowsUpdate), and the fraction of bytes in persistent requests even ranges from
<1 % (MegaVideo and MegaUpload) to 95 % (again WindowsUpdate). In terms of
pipelined requests we see maxima at 33 % for Microsoft and 11 %for RapidShare for
requests and volume, respectively. These fractions are significantly higher than those
we observe for Opera, which achieved the highest fraction sofar. We do not observe
a strong relation between the type of web service and persistence/pipelining. Consider

8 Wikipedia (version 11 August 2011):http://en.wikipedia.org/wiki/Pipelined_HTTP.

A
do

be

A
du

lt

A
ka

m
ai

A
pp

le

D
ou

bl
eC

lic
k

E
ba

y

Fa
ce

bo
ok

G
oo

gl
e

Li
m

eL
ig

ht

M
eg

aU
pl

oa
d

M
eg

aV
id

eo

M
ic

ro
so

ft

M
yV

id
eo

O
S

N

R
ap

id
S

ha
re

U
pl

oa
de

d.
to

W
in

U
pd

at
e

Yo
ut

ub
e

0

20

40

60

80

100

F
ra

ct
io

n
of

 c
or

r.
D

om
ai

n
tr

af
fic

in
 R

eq
ue

st
s/

B
yt

es
 [%

]

Persistent Requests
Pipelined Requests

Persistent Bytes
Pipelined Bytes

Fig. 7.Percentage of persistent/pipelined request/bytes for selected web services forJUN10.

for example the One-Click Hosters MegaUpload, RapidShare,and Uploaded.to. While
MegaUpload has more than 70 % of persistent requests, the other two have barely more
the 10 %. Moreover, all request that are persistent are also pipelined for RapidShare,
yet the other two have almost no pipelined requests at all. The two CDNs (Akamai and
LimeLight) also exhibit largely different fractions for persistent requests and volume.

The effects of different web services also translates into differences when examining
the results byContent-Type. Similarly to YouTube, MegaVideo, and MyVideo, flash-
video (video/flv) has less than 1 % pipelined requests and bytes. On the other hand,
application/rar has the largest amounts of both pipelined requests and bytes, being
mostly delivered by RapidShare.

The limited impact of browsers on persistence and pipelining can be explained
by two trends in web content delivery. First, distributed content delivery infrastruc-
tures can prevent persistent requests. Second, more and more web services rely on
service-supplied code to be executed in the browsers, such as AJAX-based clients [9],
which issue the HTTP requests instead of the browser. For example, in all traces except
JUN10 the fraction of persistent bytes for YouTube never exceeded4 % and but is at
47 % for JUN10. A likely explanation for this change is prolonged server restructur-
ing after Google’s acquisition of YouTube in 2006: Over all the traces we observe the
googlevideo.com domain emerge and vanish again. Evidence for the second explana-
tion can be seen from the high fraction (15 %) of pipelined request in Facebook, which
heavily uses AJAX, as it is unlikely that all these requests are issued only from Opera
browsers.

4 Content Type

We next turn our focus to HTTP’sContent-Type header. In Figure 8 we plot the fraction
of HTTP bytes for which theContent-Type header and an analysis by libmagic disagree.
We normalize the mime type strings by removing leadingx- but otherwise perform a
string comparison between the header and libmagic’s results. We find that up to 36 % of
HTTP volume exhibits mismatches. The most common case with up to 27 % is when the
Content-Type header uses a generic type (e.g., application/octet-stream or text/plain9)

9 We only count text/plain as generic if theContent-Type header specifies text/plain and libmagic
yields a non-text type.

B
yt

es
 p

er
 M

is
m

at
ch

 C
at

eg
or

y
[%

 o
f t

ot
al

 tr
af

fic
]

0

5

10

15

20

25

30

35

SEP08 AUG09 JUN10
APR09 MAR10

OTHER

Image
multipart/
form−data
Media

Text

NonGen::Gen

Gen::NonGen

Fig. 8. Mismatches between Content-Type and
libmagic as fraction of HTTP volume.

B
yt

es
 p

er
 M

is
m

at
ch

 C
at

eg
or

y
[%

 o
f G

en
::N

on
−

G
en

 tr
af

fic
]

0

20

40

60

80

100

SEP08 AUG09 JUN10
APR09 MAR10

OTHER
audio/mpeg
audio/mp4
app../ms−cab
app../ms−gen..
video/asf
app../zip
video/mp4
app../dosexec
video/msvideo
video/flv
app../rar

Fig. 9. Generic Content-Type but specific lib-
magic type: breakdown by libmagic class

but libmagic yields a known type. We label this class of mismatchesGen::NonGen. The
opposite case (NonGen::Gen, in which theContent-Type specifies a type but libmagic
fails to detect one is the second most common one. We observe that 4.6–6.6% of HTTP
bytes fall into this class. While some of the types are not supported by libmagic, e. g.,
Google safe browsing chunks, others include audio or video formats that should be
supported by libmagic. It is hard to exactly assess whether libmagic or theContent-Type
header are “correct” in such cases. In theText, Media, andImage classes theContent-
Type header agreed on the general category of the type (e.g., image) but disagreed on
the actual file format (JPEG vs. PNG). While libmagic should be accurate for image
data, other media (audio, video) is harder to assess, given that there is a plethora of
different container-types and codecs often with similar names.

When we investigate the largest class,Gen::NonGen, in more detail, we find that
(in terms of bytes) RAR-archives are responsible for around50 % of these mismatches,

Tos

2
5

20
10

0
50

0

Day of week

O
ve

r−
es

tim
at

io
n

fa
ct

or

Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed

HTTP12d, stddev = 300
HTTP14d, stddev = 6.5

Fig. 10.Over-estimation factor of theContent-Length header (60 min bins, logarithmic y-axis).

time. We choose theHTTP14d andHTTP12d traces for this analysis to show the time-
dependent behavior.

We find that theContent-Length headers over-estimate the actually downloaded vol-
ume by a factor of 3.65 for HTTP14d and a factor of 127 forHTTP12d. A closer ex-
amination ofHTTP12d shows that a single user downloading two large files from a
single host with a badly (mis-)configured download manager is the culprit. This down-
load manager opened over 400,000 connections for each of these files to parallelize the
download and requested large, overlapping byte ranges. However, the download man-
ager aborts each download after receiving enough data to cover the whole file. Overall,
the requested download volume fromContent-Length headers sums up to over 4 PB, an
over-estimation by a factor of more than 60,000. After removing these two files from
the data set the over-estimation factor forHTTP12d drops to 3.82. We observe a similar
case inHTTP14d, though to a far lesser extent and involving only a single file. After
removing the corresponding file, the over-estimation factor reduces from 3.65 to 3.28
for HTTP14d.

This highlights how much the over-estimation factor depends on events of limited
duration. This leads us to further investigate this volatility over time. Figure 10 plots
the over-estimation factor for 60 minute bins. We align our traces by day of week. In
general, the over-estimation factor is between 2.2 (2.4 for HTTP12d) and 5 for each
60 minute bin. However, we observe spikes exceeding these baselines by several orders
of magnitude. Furthermore, we see the mis-configured download manager inHTTP12d
that causes the over-estimation factor to rise to 500 to 2000for several hours.

We note that based on these 60 minute time bins, the standard deviation for both
traces exceeds the average by far. Moreover, there is no apparent weekly or daily pat-
tern. Accurate HTTP object size measurement therefore requires to parse the whole
HTTP stream.

6 Conclusion

In this paper we identify and investigate three potential pitfalls in HTTP traffic analysis.
We study the accuracy of information inContent-Length andContent-Type headers, as
well as the amount of persistent and pipelined traffic.

Our results indicate a significant over-estimation, at least 3.2 times, when relying on
the HTTPContent-Length header for volume inference. For accurate volume account-
ing, complete processing of the data after the HTTP responseheader is required to
detect transfer abortions, erroneous HTTP servers, and misconfigured download man-
agers. The mismatch betweenContent-Type header and libmagic content types amounts
to 35 % of the HTTP volume. Relying on theContent-Type header for content classifi-
cation can lead to a significant amount of unclassified content due to a genericContent-
Type, and to a lesser degree in misclassification of the content. Finally, only analyzing
the first packet of a connection discards 60 % of the total HTTPrequests and 30 % of the
HTTP volume. Simplifying the analysis by capturing just enough bytes per packet to
include HTTP headers leads to another risk: We find 4 % of the requests to be pipelined
and transmitted together with the previous request in a single packet.

As future work, we plan to further analyze the use of pipelining and persistence by
different web services and applications, especially with respect to application design
and content delivery.

7 Acknoledgements

This work was partly supported by a fellowship within the postdoctoral program of the
German Academic Exchange Service (DAAD).

References

1. AGER, B., SCHNEIDER, F., KIM , J.,AND FELDMANN , A. Revisiting cacheability in times
of user generated content. InProc. of IEEE Global Internet Symposium (2010).

2. CALLAHAN , T., ALLMAN , M., AND PAXSON, V. A longitudinal view of http traffic. In
Proc. Conference on Passive and Active Measurement (PAM) (2010).

3. DOVERSPIKE, R., AND GERBER, A. Traffic Types and Growth in Backbone Networks.
Tech. rep., In Proc. of OFC/NFOEC (invited paper), March 2011.

4. ERMAN , J., GERBER, A., HAJIAGHAYI , M. T., PEI, D., AND SPATSCHECK, O. Network-
aware forward caching. InProc. International World Wide Web Conference (WWW) (2009).

5. LABOVITZ , C., IEKEL-JOHNSON, S., MCPHERSON, D., OBERHEIDE, J., AND JAHA -
NIAN , F. Internet inter-domain traffic. InProc. ACM SIGCOMM Conference (2010).

6. MAIER, G., FELDMANN , A., PAXSON, V., AND ALLMAN , M. On dominant characteristics
of residential broadband internet traffic. InProc. Internet Measurement Conf. (IMC) (2009).

7. MAIER, G., SOMMER, R., DREGER, H., FELDMANN , A., PAXSON, V., AND SCHNEI-
DER, F. Enriching network security analysis with time travel. In Proc. ACM SIGCOMM
Conference (2008).

8. PAXSON, V. Bro: A system for detecting network intruders in real-time.Computer Networks
Journal 31, 23–24 (Dec. 1999), 2435–2463. Bro homepage:http://www.bro-ids.org.

9. SCHNEIDER, F., AGARWAL , S., ALPCAN, T., AND FELDMANN , A. The new web: charac-
terizing ajax traffic. InProc. Conference on Passive and Active Measurement (PAM) (2008).

10. SCHNEIDER, F., FELDMANN , A., KRISHNAMURTHY, B., AND WILLINGER , W. Under-
standing online social network usage from a network perspective. In Proc. Internet Mea-
surement Conf. (IMC) (2009).

